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Inversion of the fractional parentage matrix 

M Godefroidf, J Lievin and J Y Metz 
Laboratoire de Chimie Physique MolCculaire, CP160, UniversitC Libre de Bruxelles, 
Brussels, Belgium 

Received 27 August 1986 

Abstract. The Racah fractional parentage coefficients used in atomic structure calculations 
contribute to a part of an ordinary unitary matrix transformation. In the present paper 
we describe three different approaches for completing this matrix using ( i )  projection 
operator techniques, (ii) the factorisation lemma of Racah and (iii) the spin-free formalism 
already used in theoretical studies of nuclear structures. We hope to give a deeper insight 
into the fractional parentage expansion and to its inverse transformation. 

1. Introduction 

In atomic structure calculations, the fractional parentage expansion (Racah 1943) 

@( INaSL) = 1 ( I"-'a'S'L'ISL~}INaSL)@( P ' a ' S ' L ' ,  I N ,  S L )  (1) 
" S ' L '  

is used to expand the antisymmetric wavefunction of N equivalent electrons in terms 
of fractional parentage where the subscript N specifies that the N t h  electron has been 
removed from the antisymmetrised part of the wavefunction. This transformation is 
widely used for evaluating matrix elements of one- and two-particle operators (Fano 
1965). In his well known paper, Racah (1943) pointed out that the transformation 
matrix ( IN-'n'S'L'ISL/}INaSL) is not an ordinary unitary matrix but only a rectangular 
matrix which is part of a unitary one since its columns do  not exhaust all states of 
IN-' but only those which are allowed in IN, i.e. those which belong to the antisymmetric 
representation [ l N ]  of the symmetric (permutation) group S N  (Condon and Odabasi 
1980). To complete this matrix, we have to consider all the coupling schemes of the 
N-particle wavefunction giving rise to the SL symmetry, whatever the permutation 
symmetry is. We can generalise expansion (1) as 

@ ( I N d L r , )  = C  c,p(V-la,s,LJr,, I,, SL)  (2) 
J 

where r ,  and r, specify the representation of the symmetric groups S N  and S N - ,  
respectively. The fractional parentage coefficients of Racah (equation (1)) are simply 
the matrix elements U,  with r, = [ l"] and rJ = [ 1 ,-'I. The transformation matrix U 
is now complete and can be taken to be a real orthogonal unitary matrix ( U - ' = U ) .  
We can then write the inverse transformation as 

(3) @(IN-IaJsJL,rJ, I & ,  S L )  = C u,,@(INasLr,). 
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Such inverse relations have been already discussed by Jahn and Van Wieringen (1951) 
in the orthogonal transformation of orbital fractional parentage coefficients for nuclear 
shells. 

In the present paper we describe three different approaches for calculating the 
matrix elements U, of the transformations (2) and (3 )  for lNaSL = p' 'P. 

2. The projection operator techniques 

For the three-particle system p', we can consider the following six coupling schemes: 

p2[Is3D, '*'P, '-'SIP 'P (4) 

spanned by the 18 Hartree products h ,  = p+'( l)p0(2)p0(3), h2 = 

(a, 1) and given in table 1. The A, matrix elements of 
P O ( ~ ) ~ + I ( ~ ) P O ( ~ ) , .  . . , h l B  = ~ - ~ ( 1 ) ~ + ~ ( 2 ) p + ~ ( 3 ) ;  { h q ,  9 = 1,181 allowed for (Ms, ML) = 

can be calculated using vector-coupling techniques and are shown in table 2(a). 
By using projection operator techniques (Cotton 1971) we can find six 2P symmetry- 

adapted functions belonging to the irreducible representations [3], [ l'] and [21] of 

Table 1. The notation is 06+ = pop0p+,, etc. 

h , =  +GO h ,  =O$O h3 = $00 h4 = G+O h ,  = +=+ h, = -++ 
h, = +-+ ha = =++ h,=OG+ h,o=OO+ h , ,  =O+G h, ,  = ++- 
h13= +-+ h,4=  ++= h,, = GO+ h,, = +OG h,, = $+- h, ,  = -++ 

Table 2. Matrix elements for A and B (normalisation f a c t o r = l / J N ) .  
((I) matrix A 

S,L, 1 2 3 4 5 6 7 8 9 10 I 1  12 13 14 15 16 1 7 1 8  N 

['D] 3 3 3 3 - 1  - 1  - 1  - 1  -2 4 -6 -6 2 12 -2 -6 -6 2 360 

['PI - 1  1 - 1  1 1 - 1  1 - 1  -2 -2 2 2 24 

['SI - 1  - 1  - 1  - 1  1 -2 2 1 2 18 
I1S1 1 1 - 1  - 1  - 1  1 6 

[ ' D l  -3 -3 3 3 1 1 - 1  - 1  2 6 -2 -6 120 

[!PI 1 -1 - 1  1 - 1  1 1 - I  8 

(6) matrix B 

r, 1 2 3 4 5 6 7 8 9 I O  11 I2 13 14 15 16 17 18 N 

[ ] ' I  1 - I  1 -1 - I  1 - 1  1 1 -1 I - 1  12 
[3] 1 - 2 - 2  1 - 2  1 1 - 2  1 - 2  1 1  1 - 2  I 1  1 1  36 
[21]$ 2 - 1  -1 2 - 1  2 2 - 1  - 1  2 - 1  - 1  -1 2 - 1  -1 -1 -1 36 

1 - 1  1 - 1  - 1  - 1  -1 -1 1 1 1 1 1 2  

[2l]b' -1 - I  1 1 2 2 -2 -2 - 1  2 1 -2 30 
[211:' 1 1 1 1 -2 -2 -2 -2 1 -2 -2 -2 4 4 1 -2 -2 4 90 



Inversion of the fractional parentage matrix 1647 

[31 0 0 1 / J 2  -d& d / 3  [ 'Dl 
0 I / J 2  J &  -JZ/3 [IS] 

f &/3 0 
I 

the symmetric group S3 (Condon and Odabasi 1980). This can be done by the 
application of the standard Young operators associated with the standard Young 
tableaux of S3 (Chisholm 1976) 

( 6 )  

. (12) 

on the 2P functions of equation ( 5 ) .  

representation of S ,  from the sixth line of table 2 ( a ) :  
For instance, we may generate the function which forms a basis for the [13] 

?l(p'['S]p 2P)=1/~(hl-h4+h6-h,-h9+h,,-h,,+h,,+h,,-h,,+h,,-h,,).  (7 )  

Using the same generator P ~ [ ~ S ] P ~ P  we can get two basis functions for the [21] 
representation: 

93 ( p2[ s] p 'P) = 1 / m( h 1 + h 4 -  h 5-  h 8- h 1 I - h I 2 + h 13 + 2 h I 4-h 16- h 17 + h 18) 

(8) 9 4 (  p'[ s ] p ' P) = 1 / a( - h 1 + 2 h 5 + h6- h'j - h 8- h9+ h 1 2 - h 1 3 - h 14+ h 1 5 + h 16). 

Two other basisA functio?s for the [21] representation can be generated from the 
application of Y3 and Y4 on p2[3P]p2P (third line of table 2(a)) .  The projected 
functions are not orthogonal and a final Schmidt orthogonalisation procedure is 
required to obtain orthogonal symmetry-adapted 'P functions: 

where r, specifies a subspecies of an irreducible representation of the group S,. Let 
us introduce the labels I and I1 for the two states of mixed symmetry [21] and a and 
b for their respective subspecies. The B,, matrix elements of equation (9) are given in 
table 2(b). 

From (9) and ( 5 )  we can now determine the coefficients of the transformation 
required: 

by solving for each T i  the set of 18 equations in six unknowns: 

UA=B. (11) 

We obtain the following matrix transformation: 
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functions, antisymmetric for the two first particles [ 1'3. The transformation matrix U 
is now complete and is a real orthogonal unitary matrix. 

3. Using the factorisation lemma of Racah 

It is possible to predict the irreducible representations ( I R )  of S3 to which the six 'P 
belong by using the branching rules for the reduction U(6)+SU(2)xU(3)+ 
SU(2)xSO(3). This is done by Condon and Odabasi (table 1') for the n-particle state 
function p" ,  limiting to the antisymmetric partitions. We can complete this table (see 
table 3) by considering the other Young diagram shapes corresponding to the IR [3] 
and [21] and the I R  [2] of U(6) for p3 and p2 respectively. We can now see from this 
table that amongst the six 'P found in 92, one arises from [111]=[13] of U(6) 
(antisymmetric), another from [3] (symmetric) while the last four are the components 
of two [21] representations, (mixed symmetry) which are each doubly degenerate. 

Table 3. Classification of the p shell 

P' 

P2 

4s 
2P, 'D 
4F, 4P 
'P, 'D 
"P, 'D 
'F, 'P 
2S 
2P, 'D 
'P 
'S, 'D 
'P 
'S, 3 D  

We can adopt a group-theoretical approach for calculating the complete fractional 
parentage transformation matrix using Racah's factorisation lemma for a chain of 
groups (Racah 1949). Indeed, repeated applications of Racah's theorem allows us to 
express a fractional parentage coefficient as an isoscalar product (Judd 1963), i.e. 

(F' W$Ll}I" WSSL) 

=(W~~+I(W~L)([~]W+[l](lO., .O)([h] W)(/"-'[h]+ [ \ / " [ A ] )  

= I s [U(41+2)+U(2)~U(21+l ) ] I s [U(2I+ l )+R(21+1) ]  

xIs[R(21+1)+R(3)]  (13) 

one isoscalar ( I s )  appearing for each step of the reduction U(41+ 2) --f U(2) x U(21+ 1) + 

U(2) x R(21+ 1 )  + U(2) x R(3). For p electrons the last reduction is obviously avoided 
( I  = 1) while for f electrons a further factorisation must be performed. For the p shell, 
the isoscalar tables needed can be built by considering the different parentage schemes 
between the three- and two-particle functions for the two reductions U(6)+ 
SU(2) x U(3) (table 4 ( a ) )  and SU(2) x U(3)+ SU(2) x SO(3) (table 6 (a ) ) .  The 
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Table 4. lsoscalars for U(6)- SU(2) X U(3). 

I SU(2)XU(3)  

I 4[111] 

I 

[1111 j 2[211 

[211 1 2[213 
I 4[211 

1 '~31 

j 2[31 
I 71111 

P I  1 

i 
' [ i l l  l[2] I l[11] 3[2] 

- 1 i J 2  t / J 2  j 
1 O I  
1 i J 2  1 f J 2  / 1 i J 2  - i / J 2  

0 1 i o  1 

I 1 / J 2  -1142 
I o  1 

I I 

1 0 j o  1 

1 o j  0 

I 
[1111] I 5[11111 1 0 

I '[221 0 1 

coefficients required can be calculated from the orthonormality relation of isoscalars 
(Racah 1949, Judd 1963) and using the reciprocity relation proved by Racah (1949) 
and generalised by Jahn and Van Wieringen (1951). Since the general reciprocal 
relation connects the coefficients reducing a product representation involving the 
contragredient representation with those involving the original representation, the I R  

Table 5. 

Equivalent Equivalent 
Representation representation Contragredient representation 
of SU(M) of U(M) of SU(M) of U( M )  

M = 6  [ l l ]  [I11 [XI [1111 
[221111] [222211] 

[333322] 
[1111 
[222111] 
[333222] 
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required and the corresponding contragredient I R  of the special unitary group SU( M )  
as well as the equivalent representations of U( M )  are given in table 5 .  

For the U(6) + SU(2) x U(3) reduction, the reciprocity relation can be expressed as 

where x is an arbitrary phase factor and [f] is the contragredient representation of 
[fl of SU( M).  Using the equivalent representations of U( M ) ,  the reciprocity relation 
gives 

([111]2[21]~[11]'[2]+[1]2[1])= (1/~)( [1111] ' [22]~[111]2[21]+[1]~[1])  (15) 

and the required isoscalars of (p' Ip2p) can be directly deduced from that of (p41p3p) 
(see table 4(b)) ,  i.e. 

([111]2[21]~[11]'[2]+[1]2[1])= 1/42. (16) 

The rest of table 4(a) can be obtained from the orthonormality relation: 

i.e. 

where A and B1 denote the three-particle representations of U(6) and the two-particle 
representations of SU( 2) x U(3), respectively. 

Table 6 .  Isoscalars for U(3) -+ SO(3). 

( 0 )  (p31p2pi 

[331] S 0 1 
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The same procedure can be applied for the second reduction step SU(2) x U(3) + 

SU(2)xS0(3)  where the spin unitary group acts as a 'spectator' only. We have, for 
instance, 

Using the equivalent representations of U( 3) of the contragredient representations of 
SU(3) (see table 5 ) ,  the reciprocity relation becomes 

([31PI 121s + [ l lP)  = Jd c331ls  I [331p+ [ l lP)  

= Jd (20) 

the parentage of the S state being obviously unique in the corresponding table (p' I p6p) 
(see table 6(b)). Again, the rest of table 6 ( a )  can be easily constructed using the 
orthogonality relations. 

Each coefficient of fractional parentage can now be expressed as a product of two 
isoscalars taken from tables 4 ( a )  and 6(a)  for the two successive reductions U(6)+ 
SU(2) x U(3) + SU(2) x SO(3). For instance, the matrix elements Ul l ,  U25 and U,, of 
the transformation matrix of equation (12) can be written as 

4. Using the spin-free formalism 

This approach consists in calculating separately a spatial fractional parentage 
expansion: 

@'[A1(rnr , - I , .  . r, ,)( l"L) =c (l"-'[A']L'; lI}l"[A]L) 
L' 

X @ ( ~ " - ' [ A ' ] L ' ( ~ ~ - ~ .  . . r l ) ;  1; L )  

and a spin fractional parentage expansion (Chisholm 1976): 

r [ h l ( r n r n - l  . . . r , ) ( t " ~ )  = E  (t"-'[A']S'; f / } f " [ A ] S )  
S '  
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The spin and spatial functions can then be combined to give the required permutation 
symmetry: 

" A  " A  

+L[c:,l[~s] = 1 c,.,.,@,[(:.;l(L)rt:.::(s) (26) 

where the coefficients c,.,,. are those of the symmetry-adapted functions of the reduced 
representation [ A ]  appearing from [A']@[A"]. The direct products of S 3  (see table 7 )  
and the symmetry-adapted functions of the reduced representations of S 3  (see table 
8) can be used to build the total function belonging to a given I R  of S 3 .  Using the 
Young-Yamanouchi orthogonal representation of the permutation group, the orbital 
and spin fractional parentage coefficients were calculated independently by Jahn and 
Van Wieringen (1951) for the nuclear p shell, Jahn (1951) for the d shell and Flowers 
(1952) for the f shell. Their tables can be used directly in our atomic context by 
considering the entries referring to states with maximum T and Tt values in the 
charge-spin tables. The use of these tables is illustrated here for calculating some 
elements of the transformation matrix derived in §§ 2 and 3. 

Taking the spatial coefficients of fractional parentage from table 3 of Jahn and Van 

I ,"= 1 

Wieringen (1951): 

@(p3(211)[21]P)=J$@(p2S,p, P ) - J $ @ ( p 2  D,p,  P) 

@(P3(121)[211P) = @(P2 p, P, P) 

@(p3(111)[3]P)=J$@(p2S,p, P ) + J d @ ( p *  D,p,  P) 

and the spin coefficients of fractional parentage from table 6 of Jahn (1951): 

r(y3( 1 2 1 ) [ 2 i ] ~ ~ r )  = r( y 2  31r, ?, 42r) 
r( y3(2ii)[2i]42r) = r( y z  33r, y, 42r) 

Table 7. Direct products of S3. 

Table 8. Reduction of product representations of S3 (from table 4 of Jahn 1951). 

[211 x [211= [31+[211+[111] [21] x [ 11 13 = [21] 1211 x [33 = [21] 

1 
[31(111) = ~ { ~ 2 1 1 ~ i ~ 2 1 1 ~ ~ + ~ 1 2 1 j i ~ 1 2 1 ~ 2 }  

[211(211) = - ~ ~ ~ 2 1 1 ~ , ( 2 1 1 ) 2 - ( 1 2 1 ~ , ( 1 2 1 j 2 }  [211(211) = (121)(3211 [21](211) = (211)(111) 
1 

1 
[211(121) =- {(211j1(121)2+ (121) , (211j2}  [21] (121)=-(211)(321)  [21]( 121) = (121)(111) 47 

1 
[ 1 11 l (321)  = - {(2111, (121 )2  - (12 1 I] (21 1 )2}  J2 
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and using the symmetry-adapted functions of table 8, we have directly 

V(p3 2P(211)[21]) 

=-(42/3)@(pz3S, P , ~ P ) + J & ~ ( ~ ~ ~ D , P , ~ P ) + ( ~ / ~ ~ ) ~ ( ~ ' ~ P , P ,  'P) 
(29) 

from which the U, matrix elements of (12) can be derived: 

U,, = 1/42  U35 = d& u36= -4213. 

Similarly, 

v ( p 3  2 ~ ( i 2 i ) [ 2 i ] )  = @\;;l)r:;;;) 
= &/3@(p2 IS, p, ' P ) + f  @(p2 'D, p, 'P) 

U 62 - 2  - 3 U,, = &/3. 

We must point out here that the spatial fractional parentage coefficients calculated by 
Jahn and Van Wieringen are nothing other than the isoscalars needed for the approach 
of P 3 for the reduction SU(2) x U(3)+ SU(2) x SO(3). 

5. Conclusion 

We have shown how to calculate the complete fractional parentage matrix by three 
different approaches. We now have a better understanding of the inverse transformation 
(3) which is needed for a complete formulation of Brillouin's theorem in complex 
atomic and molecular configurations (Godefroid et a1 1987). 
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